Catalytic Activities of CoAl₂O₄ for Key Reactions Related to Selective Reduction of Nitrogen Monoxide with Ethene in Excess Oxygen

Noriyasu Okazaki,* Shinya Tsuda, Yoshikazu Shiina, Akio Tada, and Masakazu Iwamoto[†]
Department of Applied and Environmental Chemistry, Kitami Institute of Technology, Kitami 090

[†]Catalysis Research Center, Hokkaido University, Sapporo 060

(Received January 12, 1998; CL-980024)

The synthesis of Co₃O₄-free CoAl₂O₄ was successfully achieved, and it was revealed that this oxide (CoAl₂O₄) was more active than Al₂O₃ for NO+O₂ reaction, the initiation step of the selective reduction of NO over cobalt-loaded aluminas, but was less active than Co₃O₄-containing CoAl₂O₄ for C₂H₄+O₂ reaction, a side reaction.

Recently, cobalt-added alumina (Co/Al₂O₃) is attracting great attention as a catalyst for selective reduction of NO by hydrocarbons. $^{1-5} \text{ In Co/Al₂O₃ calcined in air, cobalt usually exists as Co₃O₄ and CoAl₂O₄.

<math display="block">^{1-5} \text{ Of the two cobalt species, Co₃O₄ can act as an oxidation catalyst, but the catalytic role of CoAl₂O₄ is still controversial.

<math display="block">^{5} \text{ Most bulk CoAl₂O₄ samples involve small amount of Co₃O₄.

In order to characterize the surface CoAl₂O₄ of Co/Al₂O₃, XPS studies have been often conducted.

<math display="block">^{1}, ^{2}, ^{4}, ^{5} \text{ In interpreting the spectra, the XPS data of a reference CoAl₂O₄ are necessary, but they are not available, since although several XPS spectra of bulk CoAl₂O₄ samples have been reported,

<math display="block">^{6-10} \text{ they are not the same; for example the binding energy value of Co2p_{3/2} has dispersed in the range of 780.6

782.2 eV.

10 One of the main reasons causing such a difference is probably that the purities of CoAl₂O₄ samples are not the same.

However, no reliable method for preparing Co₃O₄-free CoAl₂O₄ has been proposed so far.$

In the present study, therefore, we attempted to prepare a special CoAl₂O₄ which is free from Co₃O₄ not only in the bulk but in the surface, then characterized it by XRD and XPS, and finally evaluated its catalytic activities for NO+O₂ and C₂H₄+O₂ reactions, the key-reactions of the selective reduction of NO.

CoAl₂O₄ was prepared as follows. Stoichiometric amounts of Co and Al metals in the form of powder were dissolved in a nitric acid solution (0.5 M) at 60 °C, then urea was added as a precipitant, heated at 95 °C to form precipitate, then filtered, washed with deionized water, filtered again, dried at 120 °C for 24 h, calcined at 500 °C for 4 h, and finally calcined at 800 °C-1200 °C for 4 h. The selective removal of Co₃O₄ from a CoAl₂O₄ sample was carried out as follows. The sample was first reduced with hydrogen in order to convert Co₃O₄ to metallic cobalt and then immersed in a nitric acid solution at 60 °C to dissolve out the metallic cobalt (metallization-dissolution (MD) treatment).⁵ A CoAl₂O₄ sample was denoted as follows: CoAl2O4(calcination temp./°C) or CoAl₂O₄(calcination temp./°C, MD). X-Ray powder diffraction patterns were taken with a Rigaku-Electronic diffractometer RINT-1200 using monochromatic CuKα radiation. The surface area of samples was determined by the BET method using liquid N2. X-Ray photoelectron spectroscopy (XPS) analysis was performed with a Rigaku XPS-7000 spectrometer using a AlKα X-ray source operated at 10 kV and 30 mA. The binding energies were corrected by using the value of 285.0 eV for the C 1s level resulting from the contaminated carbon. The reproducibilities of the values thus obtained were within ± 0.2 eV. The NO+O2 and C2H4+O2 reactions were performed using a fixed-bed flow tubular reactor

at a W/F of 0.18 g·s·cm⁻³ (catalyst, 0.4 g; total flow rate, 130 cm³·min⁻¹). All the catalysts were further calcined at 800 °C or 1000 °C for 4 h in air before use.

Table 1 and Figure 1 show the results of XRD studies of CoAl₂O₄ samples prepared by heating at different temperatures. The results listed in Table 1 suggest that in CoAl₂O₄(800), small amount of Co₃O₄ exists together with CoAl₂O₄, while in both CoAl₂O₄(1000) and CoAl₂O₄(1200), no Co₃O₄ exists.

Figure 2 shows the XPS spectra of several CoAl₂O₄ samples. The Co2p_{3/2} binding energy of CoAl₂O₄(800) was 781.1 eV, while those of CoAl₂O₄(800, MD) and CoAl₂O₄(1000), and CoAl₂O₄(1200) were 781.3 eV. The results of computer fitting (dotted line) indicate that CoAl₂O₄(800) contained CoAl₂O₄ as well as Co₃O₄(very little), but the others comprised only CoAl₂O₄. In fact, it was only CoAl₂O₄(800) that released Co²⁺ ions during the MD treatment, indicating that CoAl₂O₄(800) clearly contained Co₃O₄.

Table 1. XRD data of CoAl₂O₄ calcined at various temperatures

800 °C		1000 °C		1200 °C		Co ₃ O ₄ ^a		CoAl ₂ O ₄ ^b	
d/Å	Int.	d/Å	Int.	d/Å	Int.	d/Å	Int.	d/Å	Int.
4.672	5	4.706	2	4.702	2	4.667	16	4.679	8
2.866	51	2.869	57	2.868	60	2.858	33	2.865	65
2.443	100	2.447	100	2.447	100	2.437	100	2.444	100
2.023	23	2.028	16	2.028	15	2.021	20	2.026	14
1.859	3	1.862	4	1.861	5	1.855	<1	1.860	4
1.652	14	1.655	16	1.655	17	1.650	9	1.654	13
1.556	31	1.561	35	1.561	40	1.556	32	1.560	27
1.432	42	1.434	45	1.434	48	1.429	38	1.433	33

^aJCPDS 43-1003. ^bJCPDS 44-160.

Figure 1. XRD patterns of CoAl₂O₄ calcined at various temperatures.

Figure 3 illustrates the activity of the CoAl₂O₄ catalysts for NO+O₂. Clearly, the activity of CoAl₂O₄(1000), Co₃O₄-free

430 Chemistry Letters 1998

Figure 2. XPS spectra of CoAl₂O₄ calcined at various temperatures.

CoAl₂O₄, was lower than that of CoAl₂O₄(800), Co₃O₄-containing CoAl₂O₄, but sufficiently higher than Al₂O₃. As can be seen in Figure 4, CoAl₂O₄(1000) was less active than CoAl₂O₄(800) for C₂H₄+O₂ too. CoAl₂O₄(800)'s superiority in the activities over CoAl₂O₄(1000) can be due to the specific surface area, and really their specific surface areas were considerably different, 52 and 20 m²·g⁻¹, respectively. However, the specific surface area was not a critical factor for determining the oxidation activities of the CoAl₂O₄ catalysts, because CoAl₂O₄(800, MD) showed lower activities than CoAl₂O₄(800), although the former's specific surface area (74 m²·g⁻¹) was higher than the latter's. Therefore, the lower oxidation activities of CoAl₂O₄(1000) is due to the absence of Co₃O₄.

Over Co/Al₂O₃ catalysts, NO+C₂H₄+O₂ is considered to occur via the following reaction mechanism.⁵

$$\begin{array}{c} NO + O_2 \rightarrow NO_2 \quad (1) \\ NO_2 + C_2H_4 \rightarrow (C_xH_yO_z) \rightarrow N_2 + CO_x + H_2O \quad (2) \\ C_2H_4 + O_2 \rightarrow CO_x + H_2O \quad (3) \end{array}$$

Over Co/Al₂O₃ step (1) and step (2) are reported to be catalyzed by Co species and Al₂O₃, respectively.² Thus, an ideal Co/Al₂O₃ catalyst for NO+C₂H₄+O₂ should be more active than Al₂O₃ for

Figure 3. Temperature dependence of the activity of various catalysts for NO+O₂. NO = 1000 ppm, O_2 = 2.0%, He = balance.

Figure 4. Temperature dependence of the activity of various catalysts for $C_2H_4+O_2$. $C_2H_4=500$ ppm, $O_2=2.0\%$, He = balance.

step (1) and be as poorly active as possible for step (3), a side reaction. Figures 3 and 4 suggest that such requirements can be fulfilled by using Co₃O₄-free CoAl₂O₄ as the Co species. Such a catalyst will be prepared so as to reduce its Co₃O₄ content, by calcining at 800 °C⁴ or by removing residual Co₃O₄ selectively.⁵

This work was partly supported by a Grant-in-Aid for Scientific Research on a Priority Area "Catalytic Chemistry of Unique Reaction Fields - Extreme Environmental Catalysts" (No. 08232208) from the Ministry of Education, Science, Sports and Culture, Japan.

References

- H. Hamada, Y. Kintaichi, M. Sasaki, T. Ito, and M. Tabata, Appl. Catal., 75, L1 (1991).
- H. Hamada, Y. Kintaichi, M. Inaba, M. Tabata, T. Yoshinari, and H. Tsuchida, Catal. Today, 29, 53 (1996).
- 3 H. Hamada, M. Haneda, N. Kakuta, H. Miura, K. Inami, T. Namba, W. Q. Hua, A. Ueno, H. Ohfune, and Y. Udagawa, Chem. Lett., 1997, 887.
- 4 N. Okazaki, Y. Katoh, Y. Shiina, A. Tada, and M. Iwamoto, Chem. Lett., 1997, 889.
- 5 N. Okazaki, S. Tsuda, Y. Shiina, and A. Tada, Chem Lett., 1998, 51.
- N. S. McIntyre and M. G. Cook, Anal. Chem., 47, 2208 (1975).
- 7 M. Oku and K. Hirokawa, J. Electron. Spestrosc. Relat. Phenom., 8, 475 (1976).
- 8 Y. Okamoto, T. Imanaka, and S. Teranishi, J. Catal., 65, 448 (1980).
- R. L. Chin and D. M. Hercules, J. Phys. Chem., 86, 360 (1982).
 K. S. Chung and F. E. Massoth, J. Catal., 64, 320 (1980).